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Resum. L’or(I) dirigeix el contorsionisme molecular mitjançant 
reaccions intramoleculars i intermoleculars d’enins per mitjà 
d’intermedis ciclopropil o carbens altament distorsionats. La 
síntesi de productes naturals com (+)-orienalol F i (-)-englerin A 
mostra l’estat d’art de la catàlisi de l’or(I) per a construir com-
plexitat molecular. 

Paraules clau: or ∙ enins ∙ ciclitzacions ∙ reordenaments ∙ 
síntesi total ∙ processos en tàndem

Summary. Gold(I) orchestrates molecular gymnastics by intra- 
and intermolecular reaction of enymes via highly distorted cy-
clopropyl gold carbenes as intermediates. The synthesis of 
natural products such as (+)-orientalol F and (−)-englerin A il-
lustrates the state of the art of gold (I) catalysis for the buildup 
of molecular complexity.

Keywords: Gold ∙ enynes ∙ cyclizations ∙ rearrangements ∙ 
total synthesis ∙ tandem process

Introduction

Gold is certainly a rare element, but it is more abundant than 
palladium, platinum, rhodium, and many other precious met-
als. It is one of the few chemical elements that every adult has 
heard about. In nature it is encountered in elemental form be-
cause its low reactivity due to its highly positive normal poten-
tial for oxidation (Fig. 1). 

Gold complexes catalyzed a bewildering array of transfor-
mations, triggered by the activation of unsaturated functional 
groups such as alkynes, allenes, and alkenes. The relativistic ef-
fects of gold explain this unique π-acidity, which reaches a maxi-

mum in the periodic table with gold [43,100–102, 108]. In par-
ticular, gold(I) salts and complexes show extraordinary affinity for 
alkynes (alkynophilicity) leading to their activation in the presence 
of many other functional groups. In a simplified form, the attack 
of nucleophiles to the alkynes occurs via π-complexes 1 to give 
trans-alkenyl-gold complexes of type 2 as reactive intermediates 
(Fig. 2) [32,35,42,46,52,72,81,83,86,87,89,96,110,124,127].

The alkynophilicity of gold(I) has been exploited for building 
up molecular complexity with great efficiency [52]. In the follow-
ing, we review the basic reactivity principles for gold(I)-promot-
ed activation of alkynes in simple 1,6-enynes, which have been 
used as a benchmark for the developing of new transforma-
tions in this area. We also present a selection of new transfor-
mations that highlight the potential of gold-catalysis for the 
construction of complex molecular architectures. 

Gold Complexes

Many reactions of relatively simple substrates can be catalyzed 
by commercially available gold salts such as AuCl, AuCl3, or 
NaAuCl4. However, for gold-catalyzed transformations of more 
functionalized substrates, the most convenient catalysts are 
cationic complexes [Au(S)(L)]X (L = phosphine ligand, S = sol-
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Fig. 1.  Gold metal and a gold(I) catalyst.

Fig. 2.  Electrophilic activation of alkynes with AuL+.
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vent molecule) that are formed in situ by chloride abstraction 
from [AuCl(L)] using an equivalent of a silver salt AgX with a non-
coordinating anion [32,85,89]. Similarly, cationic gold(I) com-
plexes can be generated by cleavage of the Au-alkyl bond in 
[AuMe(PPh3)] with a protic acid [85,89,75,76,114]. Gold-oxo 
complex [(Ph3PAu)3O]BF4 [80,126] has also been used as a cat-
alyst in reactions of enynes [111]. Different types of gold(I) com-
plexes A-F have been developed using bulky, biphenyl-based 
phosphines, which have been introduced as ligands for Pd-
catalyzed reactions [4,5,55,113,122], lead to very active cata-
lysts upon being mixed with Ag(I) salts [87] (Fig. 3). The cationic 
derivatives of these neutral complexes E-F, K and P-R [86,87] 
which are stable crystalline solids that can be handled under 
ordinary conditions, are more convenient since they are more 
reactive catalysts in a variety of transformations and silver salts 
can be avoided in the reaction [31,33,53,85]. The structures of 
A-F, and J have been confirmed by X-ray crystallography [44,97]. 
Related complexes G-H with weakly coordinated bis(trifluoro-
methanesulfonyl)amide NTf2 (Tf = CF3SO2) have also been re-
ported [71]. Gold(I) complexes J and K bearing tris(2,6-di-tert-
butylphenyl)phosphite as ligand are one of the highest electrophilic 
cationic gold(I) catalysts [65,83]. Gold complexes with highly do-
nating N-heterocyclic ligands (NHC) such as L-O are also good 
precatalysts [22,23,24,87,107]. Cationic complexes bearing 
NHC ligands such as P-R, which show moderate stability at 
room temperature [23], and those with NTf2 ligand (S-T) have 
also been reported [63,104]. 

Cyclizations of enynes: Basic principles

Mechanistic studies on gold(I)-catalyzed cyclizations of 1,n-
enynes (mainly 1,5-, 1,6- and 1,7-enynes) have led to the in-
vention of new catalysts and new reactions [52]. In general, in 
the absence of external nucleophiles, simple 1,6-enynes 3 give 
dienes 4 by skeletal rearrangement (single exo-cleavage) or 5 

(double exo-cleavage) (Fig. 4) using gold(I) or other electrophilic 
metal catalysts [3,14,15,17,18,39–41,57,59,69,70,73,74,79, 
92,93,116–119]. 

Dienes 6 were also observed using cationic gold(I) catalysts 
with 1,6-enynes [12,89]. This corresponds to a third type of 
skeletal rearrangement (single endo-cleavage). Products of 
type 6 were later found in reactions catalyzed by InCl3 [73], 
Fe(III) [86], or Ru(II) [28]. [2+2] Intramolecular cycloaddition proc-
esses leading to the formation of cyclobutenes were also ob-
served starting from 1,6- [60], 1,7- [17,18,37,129], and 
1,8-enynes [9,11]. Other type of cyclobutenes have also been 
obtained in the palladium- [118,119], platinum- [38], and gold-
catalyzed cyclization of enynes [19,20,68,83,87].

Dienes 4 obtained by the single exo-cleavage rearrangement 
are identical to those formed by the transition metal-catalyzed 
metathesis of enynes [26,78]. However, it is important to note 
that the mechanism of the skeletal rearrangement, which is a fully 
intramolecular transformation, is very different from the metathe-
sis of enynes [84,112]. For gold(I) catalysts, this rearrangement 
was proposed to proceed via cyclopropyl gold(I) carbenes 7 as 
intermediates (Fig. 5) [88]. On the other hand, the double-cleav-

Fig. 4.  Dienes obtained by metal-catalyzed skeletal rearrangement of 
1,6-enynes.

Fig. 3.  Selected gold(I) catalysts.
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age skeletal rearrangement usually leads to dienes 5 with pre-
dominant [12,52,59,119] or exclusive Z [94,95] configuration. For 
gold(I), products of type 5 are presumably obtained via  rear-
ranged carbene 8, followed by 1,2-hydrogen shift and proto-de-
metalation. The involvement of intermediates of type 8 has been 
supported experimentally by their trapping with alkenes [65], in-
doles, allyl silanes [1,2,115], and carbonyl compounds [105,106]. 

The dual character of intermediates 7 as metal carbenes and 
carbocationic species has been recently discussed by several 
groups [7,36,109]. These intermediates are often depicted for 
convenience as cyclopropyl gold carbenes 7, although accord-
ing to DFT calculations these species are distorted structures 
with a short C-C bond connecting the carbene and the cyclo-
propane C atoms, which correspond to intermediate structures 
between cyclopropyl gold carbenes and gold-stabilized ho-
moallylic carbocations [12,29,30,112]. Intermediates of type 7 
are involved in other processes such as nucleophilic additions 
of heteronucleophiles [6,9,12,52,62,81,89,100,101,124] inter- 
and intramolecular cyclopropanations [16,67,85], and intramo-
lecular [4+2] cycloadditions of arylalkynes with alkenes [83,87], 
which are all stereospecific processes.

If the cyclization reactions would take place through open 
carbocations as reactive intermediates, rotation of the bond 
could occur losing the stereospecificity that is usually observed 
in these reactions. Indeed, in a few cases non-stereospecific 
transformations have been observed. Thus, whereas reaction 
of enyne E-9a in MeOH as solvent proceeds stereospecifically 
to lead the product of methoxycyclization 10 as a single anti 
isomer, according with the general behavior observed by other 
1,6-enynes in similar reactions catalyzed by gold-[86,89] or 
platinum [69,70]. When the reaction was performed with a lim-
ited amount of MeOH, adduct 10 was obtained as an anti/syn 
mixture of stereoisomers (Fig. 6) [51]. In addition, substrates 
11a-b with strongly electron-donating substituents at the 
alkene react non-stereoselectively with cationic gold(I) cata-
lysts E or K to give 12a-b as trans/cis mixtures, although we 
have shown that the gold-catalyzed [4+2] cycloadditions of 
1,6-eynes substituted at the alkyne with aryl groups occurs 
stereospecifically [83,87]. These results demonstrate that 
bond-rotation in the carbocationic intermediate is faster than 
intramolecular attack by methanol or cyclization with the aryl 
group. Loss of stereoselectivity was also observed in some 
ring-expansion/Prins cyclizations of 1,6-enynes bearing pro-
tected cyclopropanol groups at the alkyne [53].

We found that in contrast with the behavior of most enynes 
that react stereospecifically [52,72], the gold(I)-catalyzed skel-

etal rearrangement of 1,6-enynes with strongly electron-donat-
ing groups at the alkene such as 9a-c, 13 and 14 proceeds 
anomalously (Fig. 7) [51]. Substrates 9a-c, 13 and 14 react 
with gold(I) catalyst E or a cationic Pt(II) complex to give 15a-d 
and 16 with a Z-configuration. The Z-isomers of 1,6-enynes 9a 
and 14 also give rise to Z-dienes with gold(I) catalysts.

These results suggest the involvement of open carbocations 
in these reactions as intermediates, which is supported by DFT 

Fig. 5.  Key intermediates in gold-catalyzed cyclization of 1,6-enynes.

Fig. 6.  Stereoselectivity in gold(I)-catalyzed reaction of 1,6-enynes 
with highly electron-donating groups at the alkene.

Fig. 7.  Cis-Selective skeletal rearrangement of 1,6-enynes bearing 
strongly electron-donating groups at the alkene. 
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calculations (Table 1) [12,51,88]. Thus, whereas for cationic 
gold intermediates 7 where R = H or Me, the more relevant 
resonance structure is 7b with a relatively long b bond, when R 
= c-C3H5 or p-MeOC6H4, the more relevant canonical struc-
tures correspond more closely to open carbocations 7c, in 
which the long cyclopropane bond is now c. It is important to 
note that neutral intermediate 7 with the strongly electron-do-
nating ligand L = Cl- shows a more regular structure resembling 
7a with similarly elongated b and c bonds (Table 1) [51].

An experimental evidence of the strong effect of ligands on 
the structure of intermediates in gold-catalyzed cyclizations of 
1,6-enynes was observed in the reaction of enyne 17 with 
dibenzoylmethane. In this reaction we obtained the expected 
adduct 18, and the cyclopropyl derivative 19 (Table 2) [1]. 
Thus, 18 was the major product using highly electrophilic cata-
lysts K or J / AgSbF6 with a triarylphosphite as ligand (Table 2, 

entries 2 and 3), whereas 19 was obtained almost exclusively 
when complexes L,Q-R with more donating NHC ligands were 
used (Table 2, entries 4–6). On the other hand, the site selectiv-
ity was lower with the gold(I)-phosphine complex E, which is a 
catalyst of intermediate electrophilicity (Table 2, entry 1).

Gold-catalyzed cascade cyclizations

When alcohols, ethers, and silyl ethers are present at the prop-
argylic position of the 1,6-enynes a new gold(I)-catalyzed in-
tramolecular migration of the OR groups takes place (Fig. 8) 
[50]. In the case of dienynes 20a-b, this 1,5-migration leads to 
tricyclic compounds 21a-b that are structurally related to the 
sesquiterpene globulol (22a), epiglobulol (22b) [13], and the 
amine halichonadin F (23a) [48]. Halichonadin F (23a) shows 
antimicrobial activity, whereas related natural product halicho-
nadin E (23b) is cytotoxic against L1210 murine leukemia 
(IC50, 3.0 mg/mL) and KB human epidermoid carcinoma cells 
(IC50, 2.6 mg/mL) in vitro. Along with the cis-tricyclic products, 
compounds with a trans-bicyclo[5.1.0]octane skeleton were 
also obtained in these reactions as minor product [10,21,125].

Reaction of dienyne 20b (Z configuration) in a 30:1 mixture 
of CH2Cl2/MeOH gave ether 21a in addition to the expected 
21b. When this reaction was performed with CD3OD, 21b 
showed no deuterium incorporation, which confirms that the 
1,5-migration is an intramolecular process (Fig. 9), whereas the 
methoxy group of 21a was deuterated. 

Formation of 21b is consistent with the involvement of inter-
mediate 24, in which the OR group attacks the cationic center 
to form 27. Opening of 27 then gives a a,b-unsaturated gold 
carbene/allyl gold carbocation 25a, which undergoes an in-
tramolecular cyclopropanation with the alkene at the side chain 
to give tricyclic compound 21b. Formation of product 21a-d3 

Table 1.  Calculated bond distances (Å) for intermediates 7a

R L a b c

H PH3 1.378 1.742 1.569

Me PH3 1.372 1.720 1.622

c-C3H5 Cl- 1.401 1.621 1.606

c-C3H5 PH3 1.356 1.586 1.987

p-MeOC6H4 PH3 1.344 1.578 2.328

aDFT calculations at the B3LYP/6-31G(d) (C,H,P), LANL2DZ (Au) level.

Table 2.  Gold(I)-catalyzed addition of dibenzoylmethane to 
1,6-enynes 17a

entry [Au] time (min) 18/19 
(yield, %)

1 E 30 33:67 (85)

2 K 20 77:23 (83)

3b J / AgSbF6 30 95:5 (91)

4 L / AgSbF6 30 2:98 (99)

5 Q 20 <2:98 (87) 

6 R 20 <1:99 (86)

aReactions carried out at room temperature in CH2Cl2 with 5 mol% 
catalyst. bReaction carried out at –50 °C. Fig. 8.  Gold(I)-catalyzed 1,5-migration of OR groups in dienynes 20a-b.
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can be explained by intermolecular nucleophilic addition of 
CD3OD to 24 that gives 26, which extrudes MeOD to form 25b 
that finally form 21a-d3 by intramolecular cyclopropanation.

The stereochemistry observed in the formation of 21a-d3 
from 20b shows that, contrary to that suggested for related 
substrates [81,86], the cyclization is not concerted and pro-
ceeds through discrete intermediates such as 24. The configu-
ration shown in 21b gives information about the nature of the 
intermediates: 24 cannot be an open carbocation since the 
original configuration at the alkene is preserved in these trans-
formations that are stereospecific. Additionally, it is interesting 
that migration of the OR group is faster than the intramolecular 
trapping of the first intermediate 24 by the pendant alkene, 

which have been previously shown to be a fast process in di-
enynes leading to biscyclopropanation [72,85]. 

Gold(I)-catalyzed reactions of more simple enynes 28a-b 
bearing different OR groups at the propargyl position also pro-
ceed via a,b-unsaturated gold carbenes/allyl-gold cations 29 
which has been shown by different inter- and intramolecular 
cyclopropanation (Fig. 10). Thus, reaction of 28a in the pres-
ence of norbornene gave cyclopropane 30, whereas enyne 
28b with an allyloxy group gave stereoselectively 31 as a result 
of a 1,5-migration followed by an intramolecular trapping of the 
carbene intermediate. The 1,5-migration intermediate 29 
formed in the cyclization of enyne 28a also reacted with indole 

to give adduct 32. 
The intermolecular cyclopropanation also occurred with 

1,3-dienes. Thus, reaction between 28c and 2,3-dimethyl-1,3-
butadiene with cationic catalyst Q with a bulky NHC ligand (Fig. 
11) gave a 3.3:1 mixture of 33 and hexahydroazulene 34, 
which is formed by a Cope rearrangement [54,56] of the cis-
divinylcyclopropane diastereoisomer of product 33. Interest-
ingly, hexahydroazulene 34 has the same relative configuration 
and a similar carbon skeleton to that of several naturally-occur-
ring sesquiterpenes and diterpenes [66,121].

Enynes 28c-e react with catalyst E to give 35a-c and 36a-c 
by 1,5-migration followed by a formal C-H insertion (Fig. 12). 
Related formal C-H insertions have been observed in other re-
action proceeding through Au or Pt carbenes [8,27,34,45,58, 
61,90,91]. These results are consistent with a mechanism in 
which the intermediate a,b-unsaturated gold carbene/allyl-gold 
cation 37 abstracts a hydride from the ArCH2O group to form a 

Fig. 9.  1,5-Migration of OR groups via allyl gold cations 24.

Fig. 10.  Reactions of 1,6-enynes 28a-b via 1,5-migration of OR 
groups.

Fig. 11.  Reaction of 1,6-enyne 28c with 2,3-dimethylbutadiene via 
1,5-migration of OR.

Fig. 12.  1,5-Migration of 3-benzyloxy-1,6-enynes 28c-e followed by 
formal C-H insertion.
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h1-allyl-gold(I) 38 [99], which reacts at C-1 or C-3 with the oxo-
nium cation to give products 35a-c or 36a-c, respectively. 

The reactivity of oxonium cation with gold(I) intermediates 
has been studied in the inter-[27] and intramolecular [53] reac-
tion of 1,6-enynes with aldehydes and ketones. 1,6-Enynes 
with propargyl alcohols, ethers, or silyl ethers and a carbonyl 
group at the alkenyl side chain do not react through 1,5-migra-
tion in the presence of gold(I) catalysts. Thus, oxatricyclic skel-
etons 40 were obtained by a domino process in which two C-C 
and one C-O bonds are assembled by a formal [2+2+2] alkyne/
alkene/carbonyl cycloaddition (Fig. 13) [27]. We have recently 
applied this cyclization for the synthesis of orientalol F (41) [49], 
a sesquiterpene isolated from the rhizomes of the Chinese 
plant Alisma orientalis [98]. This natural product is structurally 
related to cytotoxic englerin A (42) [103,123].

The synthesis of (+)-orientalol F (41) was carried out starting 
with enyne 39, readily available from farnesol in seven steps (Fig. 
14). Gold catalyzed cyclization of enantiomerically enriched (S)- 
39 (95:5 er) using catalyst R gave tricyclic derivative 40 in 65% 
yield. After desilylation, the allylic alcohol was treated with Collins 
reagent to give syn-epoxy alcohol 43, which was deoxygenated 

with WCl6 and n-BuLi [120] to give (+)-orientalol F (41). The syn-
thesis of pubinernoid B (45) [47] was similarly carried out from 
substrate 44 with the Z-configuration at the double bond.

The stereoselectivity observed in the cyclizations of sub-
strates 39 and 44 can be explained by the control by the prop-
argyl stereocenter in the formation of the three new stereocent-
ers during the gold(I)-catalyzed cyclization. The reaction 
presumably proceeds via intermediates 46 and 47, followed by 
an intramolecular Prins reaction and metal loss to form 40 (Fig. 
15). All these results suggest that these reactions proceed 
through intermediate 48 in which the OR group and the gold 
carbene are anti oriented. Interestingly, attack of carbonyl 
groups to the cyclopropyl gold carbene via 46 is faster that the 
1,5-migration of the OR groups.

Recently, our group completed the enantioselective total 
synthesis of (−)-englerin A (51) [77], a sesquiterpene that has 
been shown to selectively inhibit the growth of renal cancer cell 
lines at nanomolar level [82,103,128], using the cascade 
gold(I)-catalyzed reaction as the key step (Fig. 16).

Summary and outlook

Reactions of enynes catalyzed by highly electrophilic gold(I) 
complexes proceed through highly distorted cyclopropyl gold 
carbenes of type 7. Although in a few cases the reactions pro-
ceed through open carbocations as intermediates, most trans-
formations of substituted 1,6-enynes are stereospecific. 

The synthesis of (+)-orientalol F (41) and (−)-englerin A (51) il-
lustrates the potential of gold(I) catalysis for the stereoselective 
synthesis of complex natural products in a highly concise manner. 
Most of the reported synthetic applications are based on skeletal 
rearrangements, cycloadditions, and nucleophilic addition proc-
esses in which gold(I) orchestrates complex molecular gymnas-
tics. C-H insertions, such as those shown in Fig. 12, could also be 
used for the additional build up of molecular complexity.

Much has been advanced in the understanding of the reac-
tivity of alkynes with gold(I) catalysts in intermolecular process-
es in the last few years. However, the intermolecular reaction of 
alkynes with alkenes using gold(I) catalysts was an unknown 
process until the very recent discovery that, by using gold(I) 
catalysts with very bulky ligands, cyclobutenes are formed by 

Fig. 13.  Intramolecular [2+2+2] alkyne/alkene/carbonyl cycloaddition 
of ketoenynes.

Fig. 14.  Synthesis of orientalol F (41) and pubinernoid B (45) by gold-
catalyzed [2+2+2] alkyne/alkene/carbonyl cycloaddition.

Fig. 15.  Model for stereocontrol in the cyclization of enynes with prop-
argylic OR substituents.
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[2+2]-cycloaddition (Fig. 17) [64]. This new transformation opens 
new opportunities for the invention of related intermolecular 
gold(I)-catalyzed reactions.
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